LCOV - code coverage report
Current view: top level - lib/tdb/common - hash.c (source / functions) Hit Total Coverage
Test: coverage report for master 2b515b7d Lines: 105 108 97.2 %
Date: 2024-02-28 12:06:22 Functions: 3 3 100.0 %

          Line data    Source code
       1             :  /*
       2             :    Unix SMB/CIFS implementation.
       3             : 
       4             :    trivial database library
       5             : 
       6             :    Copyright (C) Rusty Russell             2010
       7             : 
       8             :      ** NOTE! The following LGPL license applies to the tdb
       9             :      ** library. This does NOT imply that all of Samba is released
      10             :      ** under the LGPL
      11             : 
      12             :    This library is free software; you can redistribute it and/or
      13             :    modify it under the terms of the GNU Lesser General Public
      14             :    License as published by the Free Software Foundation; either
      15             :    version 3 of the License, or (at your option) any later version.
      16             : 
      17             :    This library is distributed in the hope that it will be useful,
      18             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      19             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      20             :    Lesser General Public License for more details.
      21             : 
      22             :    You should have received a copy of the GNU Lesser General Public
      23             :    License along with this library; if not, see <http://www.gnu.org/licenses/>.
      24             : */
      25             : #include "tdb_private.h"
      26             : 
      27             : /* This is based on the hash algorithm from gdbm */
      28   586436634 : unsigned int tdb_old_hash(TDB_DATA *key)
      29             : {
      30    14877790 :         uint32_t value; /* Used to compute the hash value.  */
      31    14877790 :         uint32_t   i;   /* Used to cycle through random values. */
      32             : 
      33             :         /* Set the initial value from the key size. */
      34 19385370208 :         for (value = 0x238F13AF * key->dsize, i=0; i < key->dsize; i++)
      35 18798933574 :                 value = (value + (key->dptr[i] << (i*5 % 24)));
      36             : 
      37   586436634 :         return (1103515243 * value + 12345);
      38             : }
      39             : 
      40             : #ifndef WORDS_BIGENDIAN
      41             : # define HASH_LITTLE_ENDIAN 1
      42             : # define HASH_BIG_ENDIAN 0
      43             : #else
      44             : # define HASH_LITTLE_ENDIAN 0
      45             : # define HASH_BIG_ENDIAN 1
      46             : #endif
      47             : 
      48             : /*
      49             : -------------------------------------------------------------------------------
      50             : lookup3.c, by Bob Jenkins, May 2006, Public Domain.
      51             : 
      52             : These are functions for producing 32-bit hashes for hash table lookup.
      53             : hash_word(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
      54             : are externally useful functions.  Routines to test the hash are included
      55             : if SELF_TEST is defined.  You can use this free for any purpose.  It's in
      56             : the public domain.  It has no warranty.
      57             : 
      58             : You probably want to use hashlittle().  hashlittle() and hashbig()
      59             : hash byte arrays.  hashlittle() is faster than hashbig() on
      60             : little-endian machines.  Intel and AMD are little-endian machines.
      61             : On second thought, you probably want hashlittle2(), which is identical to
      62             : hashlittle() except it returns two 32-bit hashes for the price of one.
      63             : You could implement hashbig2() if you wanted but I haven't bothered here.
      64             : 
      65             : If you want to find a hash of, say, exactly 7 integers, do
      66             :   a = i1;  b = i2;  c = i3;
      67             :   mix(a,b,c);
      68             :   a += i4; b += i5; c += i6;
      69             :   mix(a,b,c);
      70             :   a += i7;
      71             :   final(a,b,c);
      72             : then use c as the hash value.  If you have a variable length array of
      73             : 4-byte integers to hash, use hash_word().  If you have a byte array (like
      74             : a character string), use hashlittle().  If you have several byte arrays, or
      75             : a mix of things, see the comments above hashlittle().
      76             : 
      77             : Why is this so big?  I read 12 bytes at a time into 3 4-byte integers,
      78             : then mix those integers.  This is fast (you can do a lot more thorough
      79             : mixing with 12*3 instructions on 3 integers than you can with 3 instructions
      80             : on 1 byte), but shoehorning those bytes into integers efficiently is messy.
      81             : */
      82             : 
      83             : #define hashsize(n) ((uint32_t)1<<(n))
      84             : #define hashmask(n) (hashsize(n)-1)
      85             : #define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
      86             : 
      87             : /*
      88             : -------------------------------------------------------------------------------
      89             : mix -- mix 3 32-bit values reversibly.
      90             : 
      91             : This is reversible, so any information in (a,b,c) before mix() is
      92             : still in (a,b,c) after mix().
      93             : 
      94             : If four pairs of (a,b,c) inputs are run through mix(), or through
      95             : mix() in reverse, there are at least 32 bits of the output that
      96             : are sometimes the same for one pair and different for another pair.
      97             : This was tested for:
      98             : * pairs that differed by one bit, by two bits, in any combination
      99             :   of top bits of (a,b,c), or in any combination of bottom bits of
     100             :   (a,b,c).
     101             : * "differ" is defined as +, -, ^, or ~^.  For + and -, I transformed
     102             :   the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
     103             :   is commonly produced by subtraction) look like a single 1-bit
     104             :   difference.
     105             : * the base values were pseudorandom, all zero but one bit set, or
     106             :   all zero plus a counter that starts at zero.
     107             : 
     108             : Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
     109             : satisfy this are
     110             :     4  6  8 16 19  4
     111             :     9 15  3 18 27 15
     112             :    14  9  3  7 17  3
     113             : Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
     114             : for "differ" defined as + with a one-bit base and a two-bit delta.  I
     115             : used http://burtleburtle.net/bob/hash/avalanche.html to choose
     116             : the operations, constants, and arrangements of the variables.
     117             : 
     118             : This does not achieve avalanche.  There are input bits of (a,b,c)
     119             : that fail to affect some output bits of (a,b,c), especially of a.  The
     120             : most thoroughly mixed value is c, but it doesn't really even achieve
     121             : avalanche in c.
     122             : 
     123             : This allows some parallelism.  Read-after-writes are good at doubling
     124             : the number of bits affected, so the goal of mixing pulls in the opposite
     125             : direction as the goal of parallelism.  I did what I could.  Rotates
     126             : seem to cost as much as shifts on every machine I could lay my hands
     127             : on, and rotates are much kinder to the top and bottom bits, so I used
     128             : rotates.
     129             : -------------------------------------------------------------------------------
     130             : */
     131             : #define mix(a,b,c) \
     132             : { \
     133             :   a -= c;  a ^= rot(c, 4);  c += b; \
     134             :   b -= a;  b ^= rot(a, 6);  a += c; \
     135             :   c -= b;  c ^= rot(b, 8);  b += a; \
     136             :   a -= c;  a ^= rot(c,16);  c += b; \
     137             :   b -= a;  b ^= rot(a,19);  a += c; \
     138             :   c -= b;  c ^= rot(b, 4);  b += a; \
     139             : }
     140             : 
     141             : /*
     142             : -------------------------------------------------------------------------------
     143             : final -- final mixing of 3 32-bit values (a,b,c) into c
     144             : 
     145             : Pairs of (a,b,c) values differing in only a few bits will usually
     146             : produce values of c that look totally different.  This was tested for
     147             : * pairs that differed by one bit, by two bits, in any combination
     148             :   of top bits of (a,b,c), or in any combination of bottom bits of
     149             :   (a,b,c).
     150             : * "differ" is defined as +, -, ^, or ~^.  For + and -, I transformed
     151             :   the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
     152             :   is commonly produced by subtraction) look like a single 1-bit
     153             :   difference.
     154             : * the base values were pseudorandom, all zero but one bit set, or
     155             :   all zero plus a counter that starts at zero.
     156             : 
     157             : These constants passed:
     158             :  14 11 25 16 4 14 24
     159             :  12 14 25 16 4 14 24
     160             : and these came close:
     161             :   4  8 15 26 3 22 24
     162             :  10  8 15 26 3 22 24
     163             :  11  8 15 26 3 22 24
     164             : -------------------------------------------------------------------------------
     165             : */
     166             : #define final(a,b,c) \
     167             : { \
     168             :   c ^= b; c -= rot(b,14); \
     169             :   a ^= c; a -= rot(c,11); \
     170             :   b ^= a; b -= rot(a,25); \
     171             :   c ^= b; c -= rot(b,16); \
     172             :   a ^= c; a -= rot(c,4);  \
     173             :   b ^= a; b -= rot(a,14); \
     174             :   c ^= b; c -= rot(b,24); \
     175             : }
     176             : 
     177             : 
     178             : /*
     179             : -------------------------------------------------------------------------------
     180             : hashlittle() -- hash a variable-length key into a 32-bit value
     181             :   k       : the key (the unaligned variable-length array of bytes)
     182             :   length  : the length of the key, counting by bytes
     183             :   val2    : IN: can be any 4-byte value OUT: second 32 bit hash.
     184             : Returns a 32-bit value.  Every bit of the key affects every bit of
     185             : the return value.  Two keys differing by one or two bits will have
     186             : totally different hash values.  Note that the return value is better
     187             : mixed than val2, so use that first.
     188             : 
     189             : The best hash table sizes are powers of 2.  There is no need to do
     190             : mod a prime (mod is sooo slow!).  If you need less than 32 bits,
     191             : use a bitmask.  For example, if you need only 10 bits, do
     192             :   h = (h & hashmask(10));
     193             : In which case, the hash table should have hashsize(10) elements.
     194             : 
     195             : If you are hashing n strings (uint8_t **)k, do it like this:
     196             :   for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
     197             : 
     198             : By Bob Jenkins, 2006.  bob_jenkins@burtleburtle.net.  You may use this
     199             : code any way you wish, private, educational, or commercial.  It's free.
     200             : 
     201             : Use for hash table lookup, or anything where one collision in 2^^32 is
     202             : acceptable.  Do NOT use for cryptographic purposes.
     203             : -------------------------------------------------------------------------------
     204             : */
     205             : 
     206   252614315 : static uint32_t hashlittle( const void *key, size_t length )
     207             : {
     208    13036083 :   uint32_t a,b,c;                                          /* internal state */
     209    13036083 :   union { const void *ptr; size_t i; } u;     /* needed for Mac Powerbook G4 */
     210             : 
     211             :   /* Set up the internal state */
     212   252614315 :   a = b = c = 0xdeadbeef + ((uint32_t)length);
     213             : 
     214   252614315 :   u.ptr = key;
     215   252614315 :   if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
     216   238584097 :     const uint32_t *k = (const uint32_t *)key;         /* read 32-bit chunks */
     217             :     const uint8_t  *k8;
     218             : 
     219             :     /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
     220  1005113072 :     while (length > 12)
     221             :     {
     222   754513979 :       a += k[0];
     223   754513979 :       b += k[1];
     224   754513979 :       c += k[2];
     225   754513979 :       mix(a,b,c);
     226   754513979 :       length -= 12;
     227   754513979 :       k += 3;
     228             :     }
     229             : 
     230             :     /*----------------------------- handle the last (probably partial) block */
     231   250599093 :     k8 = (const uint8_t *)k;
     232   250599093 :     switch(length)
     233             :     {
     234    18159611 :     case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
     235    11472732 :     case 11: c+=((uint32_t)k8[10])<<16; FALL_THROUGH;
     236    52426886 :     case 10: c+=((uint32_t)k8[9])<<8;   FALL_THROUGH;
     237    65113054 :     case 9 : c+=k8[8];                  FALL_THROUGH;
     238    76268451 :     case 8 : b+=k[1]; a+=k[0]; break;
     239    14825770 :     case 7 : b+=((uint32_t)k8[6])<<16;  FALL_THROUGH;
     240    23494704 :     case 6 : b+=((uint32_t)k8[5])<<8;   FALL_THROUGH;
     241    33420146 :     case 5 : b+=k8[4];                  FALL_THROUGH;
     242   101146517 :     case 4 : a+=k[0]; break;
     243     8244067 :     case 3 : a+=((uint32_t)k8[2])<<16;  FALL_THROUGH;
     244    42700539 :     case 2 : a+=((uint32_t)k8[1])<<8;   FALL_THROUGH;
     245    55024514 :     case 1 : a+=k8[0]; break;
     246           0 :     case 0 : return c;
     247             :     }
     248     2015222 :   } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
     249      771880 :     const uint16_t *k = (const uint16_t *)key;         /* read 16-bit chunks */
     250             :     const uint8_t  *k8;
     251             : 
     252             :     /*--------------- all but last block: aligned reads and different mixing */
     253      807944 :     while (length > 12)
     254             :     {
     255       27659 :       a += k[0] + (((uint32_t)k[1])<<16);
     256       27659 :       b += k[2] + (((uint32_t)k[3])<<16);
     257       27659 :       c += k[4] + (((uint32_t)k[5])<<16);
     258       27659 :       mix(a,b,c);
     259       27659 :       length -= 12;
     260       27659 :       k += 6;
     261             :     }
     262             : 
     263             :     /*----------------------------- handle the last (probably partial) block */
     264      780285 :     k8 = (const uint8_t *)k;
     265      780285 :     switch(length)
     266             :     {
     267         264 :     case 12: c+=k[4]+(((uint32_t)k[5])<<16);
     268         264 :              b+=k[2]+(((uint32_t)k[3])<<16);
     269         264 :              a+=k[0]+(((uint32_t)k[1])<<16);
     270         264 :              break;
     271      743229 :     case 11: c+=((uint32_t)k8[10])<<16;      FALL_THROUGH;
     272      743233 :     case 10: c+=k[4];
     273      743233 :              b+=k[2]+(((uint32_t)k[3])<<16);
     274      743233 :              a+=k[0]+(((uint32_t)k[1])<<16);
     275      743233 :              break;
     276          22 :     case 9 : c+=k8[8];                       FALL_THROUGH;
     277          22 :     case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
     278          22 :              a+=k[0]+(((uint32_t)k[1])<<16);
     279          22 :              break;
     280       10565 :     case 7 : b+=((uint32_t)k8[6])<<16;       FALL_THROUGH;
     281       10718 :     case 6 : b+=k[2];
     282       10718 :              a+=k[0]+(((uint32_t)k[1])<<16);
     283       10718 :              break;
     284          13 :     case 5 : b+=k8[4];                       FALL_THROUGH;
     285          13 :     case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
     286          13 :              break;
     287        1747 :     case 3 : a+=((uint32_t)k8[2])<<16;       FALL_THROUGH;
     288       25921 :     case 2 : a+=k[0];
     289       25921 :              break;
     290         114 :     case 1 : a+=k8[0];
     291         114 :              break;
     292           0 :     case 0 : return c;                     /* zero length requires no mixing */
     293             :     }
     294             : 
     295             :   } else {                        /* need to read the key one byte at a time */
     296      222255 :     const uint8_t *k = (const uint8_t *)key;
     297             : 
     298             :     /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
     299     1330205 :     while (length > 12)
     300             :     {
     301       95268 :       a += k[0];
     302       95268 :       a += ((uint32_t)k[1])<<8;
     303       95268 :       a += ((uint32_t)k[2])<<16;
     304       95268 :       a += ((uint32_t)k[3])<<24;
     305       95268 :       b += k[4];
     306       95268 :       b += ((uint32_t)k[5])<<8;
     307       95268 :       b += ((uint32_t)k[6])<<16;
     308       95268 :       b += ((uint32_t)k[7])<<24;
     309       95268 :       c += k[8];
     310       95268 :       c += ((uint32_t)k[9])<<8;
     311       95268 :       c += ((uint32_t)k[10])<<16;
     312       95268 :       c += ((uint32_t)k[11])<<24;
     313       95268 :       mix(a,b,c);
     314       95268 :       length -= 12;
     315       95268 :       k += 12;
     316             :     }
     317             : 
     318             :     /*-------------------------------- last block: affect all 32 bits of (c) */
     319     1234937 :     switch(length)
     320             :     {
     321       83821 :     case 12: c+=((uint32_t)k[11])<<24; FALL_THROUGH;
     322      101034 :     case 11: c+=((uint32_t)k[10])<<16; FALL_THROUGH;
     323      101153 :     case 10: c+=((uint32_t)k[9])<<8;   FALL_THROUGH;
     324      106732 :     case 9 : c+=k[8];                  FALL_THROUGH;
     325      134673 :     case 8 : b+=((uint32_t)k[7])<<24;  FALL_THROUGH;
     326      134917 :     case 7 : b+=((uint32_t)k[6])<<16;  FALL_THROUGH;
     327      168267 :     case 6 : b+=((uint32_t)k[5])<<8;   FALL_THROUGH;
     328      229173 :     case 5 : b+=k[4];                  FALL_THROUGH;
     329     1229204 :     case 4 : a+=((uint32_t)k[3])<<24;  FALL_THROUGH;
     330     1234442 :     case 3 : a+=((uint32_t)k[2])<<16;  FALL_THROUGH;
     331     1234807 :     case 2 : a+=((uint32_t)k[1])<<8;   FALL_THROUGH;
     332     1234937 :     case 1 : a+=k[0];
     333     1234937 :              break;
     334           0 :     case 0 : return c;
     335             :     }
     336             :   }
     337             : 
     338   252614315 :   final(a,b,c);
     339   252614315 :   return c;
     340             : }
     341             : 
     342   252614315 : _PUBLIC_ unsigned int tdb_jenkins_hash(TDB_DATA *key)
     343             : {
     344   252614315 :         return hashlittle(key->dptr, key->dsize);
     345             : }

Generated by: LCOV version 1.14